PRIMA PARTE: Il corso ITSC

CAP.1 INTRODUZIONE AL CORSO E RICHIAMI TEORICI	pag. 1
1.1 Problematiche dei Sistemi di Controllo "REALI"	pag. 1
1.2 Passi fondamentali della progettazione di un Sistema di Controllo	<i>pag.</i> 3
1.3 Richiami di Controllo Digitale	<i>pag.</i> 5
1.3.1 Vantaggi offerti dall'impiego del calcolatore come regolatore	<i>pag.</i> 7
1.3.2 Svantaggi che comporta l'impiego del calcolatore come regolatore	pag. 7
1.3.3 Analisi dei segnali	pag. 8
1.3.4 Segnali canonici discreti	pag. 12
1.3.5 Sistemi dinamici discreti	pag. 13
1.3.6 Approccio alla sintesi del regolatore	pag. 14
1.3.7 Breve richiamo sulla applicazione della Tasformata ZETA allo studio dei SdC	
1.3.8 I metodi di discretizzazione di un sistema continuo e loro applicazione a G(s)	pag. 16
1.3.9 Osservazioni sulla scelta del periodo Ts di campionamento	pag. 19
CAP.2 TRASDUTTORI	pag. 20
2.1 Indeed describe a street described of	20
2.1 Introduzione ai trasduttori	pag. 20
2.2 Caratteristiche statiche	pag. 20
2.2.1 Accuratezza	pag. 21
2.2.2 Risoluzione	pag. 21
2.2.3 Ripetibilità	pag. 21
2.2.4 Isteresi	pag. 22
2.2.5 Linearità	pag. 22
2.3 Caratteristiche dinamiche	pag. 24
2.3.1 Parametri della RISPOSTA AL GRADINO	pag. 25
2.3.2 La RISPOSTA IN FREQUENZA	pag. 25
2.4 Trasduttori di posizione	<i>pag.</i> 26
2.4.1 POTENZIOMETRI	pag. 26
2.4.2 Linear Variable Differential Transformers	pag. 29
2.4.3 Encoders ottici	pag. 30
2.4.4 Synchro e Resolver	<i>pag.</i> 33
2.5 Trasduttori di FORZA	<i>pag.</i> 36
2.5.1 Strain Gage	pag. 36
2.6 Trasduttori di spostamento: Accelerometri	pag. 39
2.7 Trasduttori di PRESSIONE	pag. 41
2.7.1 Trasduttori di pressione a STRAIN GAGE LAMINARE	pag. 41
2.7.2 Trasduttori di pressione a CONDENSATORE	pag. 42
2.7.3 Trasduttori di pressione a LVDT	pag. 42
2.7.4 Trasduttori di pressione a POTENZIOMETRO	pag. 43
2.8 Trasduttori di temperatura	pag. 44
2.8.1 Termocoppie	pag. 44
2.8.2 RTD	pag. 46
2.8.3 Termistori	pag. 46
2.8.4 Trasduttori di temperatura a Circuito Integrato	pag. 47
CAP.3 CONDIZIONAMENTO DEI SEGNALI E TRASMISSIONE	pag. 49
3.1 Introduzione	pag. 49
3.2 Amplificatore per strumentazione	pag. 51
3.3 Circuiti di adattamento d'ampiezza e traslazione di livello.	pag. 54
3.4 Conversione Tensione → Corrente	pag. 55
3.4.1 Convertitore V/I con carico flottante	pag. 55 pag. 56
3.4.2 Convertitore V/I con carico riferito a massa	
	pag. 57
3.5 Convertitori Corrente → Tensione	pag. 58
3.6 Convertitori Tensione → Frequenza	pag. 59
3.7 Convertitori Frequenza → Tensione	<i>pag.</i> 61

3.8 Circuiti di isolamento	pag. 63
3.8.1 Amplificatori accoppiati con trasformatore	pag. 64
3.8.2 Amplificatori ad accoppiamento ottico	pag. 65
3.9 Cablaggio	pag. 69
3.9.1 Schermatura magnetica ed elettrostatica	pag. 69
3.9.2 Messa a terra e interconnessione di sottosistemi	pag. 70
CAP.4 ATTUATORI	pag. 74
4.1 Breve introduzione agli attuatori	pag. 74
4.2 Motore in corrente continua	pag. 76
4.2.1 Richiami di elettrotecnica	pag. 76
4.2.2 Struttura del motore in c.c. e modello matematico della parte elettrica	pag. 77
4.2.3 Modello della parte meccanica del motore in c.c.	pag. 79
4.2.4 Modello completo del motore c.c.	pag. 81
4.2.5 Motoriduttore	pag. 82
CAP.5 MODELLIZZAZIONE DEI SISTEMI MECCANICI	pag. 84
5.1 Derivazione delle equazioni del moto	pag. 84
5.1.1 Esempio elementare	pag. 84
5.1.2 Modellizzazione di un sistema meccanico non lineare: il pendolo inverso	pag. 85
CAP.6 IDENTIFICAZIONE	pag. 89
6.1 Introduzione	naa 80
6.2 Identificazione Non-Parametrica	pag. 89 pag. 89
6.2.1 Approccio alla identificazione dei Sistemi Lineari a tempo continuo e discreto	
6.2.2 Proprietà fondamentale dei sistemi discreti BIBO stabili	pag. 93
6.2.3 Il metodo "una frequenza per volta": trattamento dei campioni I/O	pag. 94
6.2.4 Il problema del rumore: stima spettrale stocastica	pag. 98
6.3 Identificazione Parametrica	pag. 100
6.3.1 Utilizzo dell'informazione "a priori"	pag. 102
6.3.2 Definizione dell'errore di stima	pag. 103
6.3.3 Minimi quadrati	pag.106
6.3.4 Minimi Quadrati Ricorsivi	pag.109
6.3.5 Cenno al metodo dei Minimi Quadrati Stocastici	pag.112
CAP.7 SISTEMI NON LINEARI	pag.113
7.1 Introduzione	pag.113
7.2 Approccio allo studio della stabilità dei sist. closed loop non lineari	pag.113
7.2.1 Il metodo della Funzione Descrittiva: un esempio preliminare	pag.114
7.3 Il metodo della funzione descrittiva	pag.116
7.4 Il criterio di Nyquist e sua estensione	pag.118
7.5 Ricerca dei cicli limite per via grafica	pag.120
7.6 Esempi di comuni non-linearità	pag.121
7.6.1 Saturazione	pag.121
7.6.2 Relè ideale	pag.123
7.6.3 Zona morta	pag.124
7.6.3 Backlash	pag.125
7.6.4 Relè con isteresi	pag.126
7.6.5 Quantizzazione	pag. 126
7.6.6 Relè con zona morta	pag. 127
7.6.7 Esempio di ricerca dei cicli limite con il metodo grafico	pag. 128
7.7 Analisi di stabilità dei cicli limite con il metodo grafico	pag.129
7.8 Affidabilità dell'analisi mediante funzione descrittiva	pag. 129
7.9 Criterio del cerchio (ridotto)	pag.130

CAP.8 COMPENSAZIONE DI RITARDO NEI SdC	pag.133
8.1 Introduzione: il problema del ritardo	pag. 133
8.2 Il compensatore di Smith	pag.134
CAP.9 REGOLATORI P.I.D.	pag.138
9.1 Note introduttive	pag.138
9.2 Caratterizzazione dei regolatori PID	pag.139
9.2.1 Banda Proporzionale	pag. 140
9.2.2 Tempo dell'azione integrale	pag. 140
9.2.3 Tempo di anticipo	pag. 141
9.2.4 Struttura dei regolatori	pag.142
9.3 Algoritmi P.I.D. assoluti	pag. 143
9.4 Configurazioni alternative dei regolatori P.I.D.	pag.146
9.5 Sintesi dei controllori PID (tuning)	pag.147
9.5.1 Sintesi basata sul margine di fase	pag.147
9.5.2 Osservazioni sulla scelta del parametro a e della banda B	pag.149
9.5.3 Sintonizzazione sperimentale con i metodi di Ziegler e Nichols	pag.151
9.6 Controllori P.I.D. digitali	pag.154
9.7 Desaturazione dell'azione integrale (anti reset wind-up)	pag.154
9.7.1 Desaturazione nei controllori PID digitali	pag.157
9.8 Funzionamento Manuale/Automatico	pag.158
9.8.1 Commutazione A/M nei controllori digitali	pag.159
9.9 Varianti dei regolatori P.I.D.	pag.160
9.10 Effetto delle quantizzazioni negli algoritmi P.I.D.	pag.161
9.10.1 Azione I	pag. 161
9.10.2 Azione D	pag. 162
CAP.10 REGOLATORI AUTO-TUNING	pag.165
10.1 La sintonizzazione dei regolatori	pag. 165
10.2 Controllo adattativo	pag. 166
10.2.1 Controllo adattativo tipo Self-Tuning (STR)	pag.166
10.2.2 Gain Scheduling	pag.168
10.2.3 Sistemi adattativi tipo Model- Reference (MRAC)	pag. 169
10.2.4 Sistemi esperti per la sintonizzazione	pag.170
10.3 Controllori P.I.D. Auto-Tuning	pag.170
10.4 Caratterizzazione di un processo mediante ciclo limite	pag.172
10.4.1 Introduzione: tuning con il secondo metodo di Ziegler e Nichols	pag.172
10.4.2 Il metodo di Astrom e Hagglund: tuning con isteresi	pag.172
10.4.3 Esistenza del ciclo limite	pag.174
10.4.4 Stabilità del ciclo limite	pag.176
10.4.5 Problemi nella realizzazione del metodo	pag.176
10.4.6 Sintesi del regolatore con margine di fase specificato	pag.177
10.4.7 Azione proporzionale	pag.177
10.4.8 Azione PID	pag.178
10.4.9 Conclusione	pag. 180
CAP.11 CONTROLLO FEED-FORWARD	pag.181
11.1 Compensazione dei disturbi nei sistemi di controllo	pag.181
11.1.1 Esempio di compensazione Feed-Forward	pag. 183
11.1.2 Stima del disturbo	pag. 184
11.2 Azione feed-forward nei sistemi di asservimento	pag. 185

CAP.12 ELEMENTI DI CONTROLLO OTTIMO	pag.189
12.1 Il problema fondamentale del controllo ottimo	pag.189
12.1.1 La "funzione obiettivo modificata" e l'Hamiltoniano	pag.189
12.1.2 L'equazione aggiunta	pag. 191
12.1.3 Il Principio del Massimo	pag. 192
12.1.4 Esempio di applicazione del principio del massimo	pag. 193
12.2 Problemi con vincoli terminali	pag. 194
12.2.1 Il Principio del Massimo per problemi con vincoli terminali	pag. 195
12.2.2 Esempio di applicazione del Princ. del Max per probl. con vincoli terminali	pag. 195
12.3 Problemi a tempo finale libero	pag.196
12.4 Sistemi lineari con costo quadratico: Regolatore LQ	pag. 198
12.5 Problemi a tempo minimo e controllo Bang-Bang	pag.200
12.5.1 Esempio di problema a tempo minimo: controllo di un sistema inerziale	pag.202
12.5.2 Esempio di problema a tempo minimo: controllo di un oscillatore sinusoidale	
12.6 Controllo ottimo a tempo minimo per servomeccanismi	pag.204
12.6.1 Continuous time-optimal control applicato ad un processo doppio integratore	
12.6.2 PTOS a tempo continuo	pag.205
12.6.3 PTOS a tempo discreto	pag.207
1	1 0
CAP.13 POLI E ZERI NEI SISTEMI MECCANICI	pag.209
13.1 Sistemi co-locati e non co-locati	pag.209
13.1.2 Esempio: sist. meccanico massa-molla-massa	pag.210
13.2 Poli e zeri nei sistemi meccanici	pag.212
13.2.1 Il problema del posizionamento dei sensori	pag.213
13.3 Analisi di un sistema meccanico a due gradi di libertà con giunto elastico	pag.215
13.4 Analisi del sistema rotante con motoriduttore e flexible joint	pag.217
13.4.1 Approccio alla progettazione del controllore PID per il sistema flexible joint	pag.219
13.5 Strutture flessibili	pag.220
13.5.1 Ipotesi dell'analisi di Eulero-Bernoulli	pag.221
13.5.2 L'equazione generale del moto	pag.222
13.5.3 Analisi vincolata	pag.224
13.5.4 Analisi non vincolata	pag.225
CAP.14 USO DI STIMATORI	pag.227
14.1 Gli stimatori dello stato: breve richiamo teorico	pag.227
14.2 La tecnica Disturbance Observer	pag.227
14.2.1 Acceleration Tracing Orientation Metod (ATOM)	pag.230 pag.230
14.2.1 Acceleration Tracing Orientation Metod (ATOM) 14.3 La compensazione del disturbo nel sistema con giunto elastico	pag.234
14.4 Progettazione dello stimatore per il sistema motore+giunto elastico	pag.235
14.4.1 Progettazione dello stimatore discreto per il modello privo di disturbi costanti	
14.4.2 Progettazione dello stimatore discreto per il sistema con disturbo di tipo	ρας.236
"passeggiata aleatoria"	pag.240
14.4.3 Taratura sperimentale della varianza del rumore di modello: test di Bartlett	pag.240